

Тіро	Periódico
Título	Design of a New Chemoenzymatic Process for Producing Epoxidized Monoalkyl Esters
	from Used Soybean Cooking Oil and Fusel Oil
Autores	Fernanda R. Mattos, José Miguel Júnior, Guilherme J. Sabi, Pedro H. D. Garcia, Patrícia
	O. Carvalho, Jaine H. H. Luiz, Adriano A. Mendes
Autor (es) LISE	Pedro H. D. Garcia. Patrícia O. Carvalho
Autores Internacionais	
Programa/Curso (s)	Programa de Pós-Graduação Stricto Sensu em Ciências da Saúde
DOI	https://doi.org/10.3390/catal13030543
Assunto (palavras chaves)	epoxidized monoalkyl esters; chemoenzymatic process; waste oil; fusel oil
Idioma	Inglês
Fonte	Título do periódico: Catalysts
	ISSN: 2073-4344
	Volume/Número/Paginação/Ano: 13(3), 543, 2023
Data da publicação	08/03/2023
Formato da produção	Impressa
Resumo	The aim of this study was to produce epoxidized monoalkyl esters (EMAE), a valuable
	class of oleochemicals used in a wide range of products and industries, from used
	soybean cooking oil (USCO) and fusel oil via a three-step chemoenzymatic process. This
	process consists of a first enzymatic hydrolysis of USCO to produce free fatty acids (FFA).
	Here, five microbial lipases with different specificities were tested as biocatalysts. Full
	nydrolysis of USCO was obtained after a 180 min reaction time under vigorous stirring
	(1500 rpm) using a non-specific lipase from <i>Canalad rugosa</i> (CRL). Then, monoalkyl
	esters (MAE) were produced via the esternication of FFA and fuser of the solvent-free
	adcorntion on poly(styronono diviny/honzono) (PSty DVP) hoads as a biosatalyst
	Different water removal strategies (closed and open reactors in the presence or
	absence of molecular sieves at 5% m m^{-1} on the reaction were evaluated. Maximum
	EFA conversions of 64.3 \pm 2.3% (open reactor after a 30 min reaction time) and 73.5 \pm
	0.4% (closed reactor after a 45 min reaction time) were observed at 40 °C using a
	stoichiometric EFA: fusel oil molar ratio (1:1), without molecular sieves, and 5 mg of
	immobilized protein per gram of reaction mixture. Under these conditions, maximum
	FFA conversion was only $30.2 \pm 2.7\%$ after a 210 min reaction time in a closed reactor
	using soluble lipase. Reusability tests showed better retention of the original activity of
	immobilized ET2.0 (around 82%) after eight successive batches of esterification
	reactions conducted in an open reactor. Finally, the produced MAE was epoxidized via
	the Prilezhaev reaction, a classical chemical epoxidation process, using hydrogen
	peroxide and formic acid as a homogeneous catalyst. The products were characterized
	by standard methods and identified using proton nuclear magnetic resonance (¹ H
	NMR). Maximum unsaturated bond conversions into epoxy groups were at
	approximately 33%, with the experimental epoxy oxygen content (OOC $_{exp}$) at
	1.75–1.78%, and selectivity (S) at 0.81, using both MAEs produced (open or closed

	reactors). These results show that this new process is a promising approach for
	value-added oleochemical production from low-cost and renewable raw materials.
Fomento	FAPESP 22/15643-3

